2 research outputs found

    VADER - A Satellite Mission Concept For High Precision Dark Energy Studies

    Get PDF
    We present a satellite mission concept to measure the dark energy equation of state parameter w with percent-level precision. The Very Ambitious Dark Energy Research satellite (VADER) is a multi-wavelength survey mission joining X-ray, optical, and IR instruments for a simultaneous spectral coverage from 4microns (0.3eV) to 10keV over a field of view (FoV) of 1 square degree. VADER combines several clean methods for dark energy studies, the baryonic acoustic oscillations in the galaxy and galaxy cluster power spectrum and weak lensing, for a joint analysis over an unrivalled survey volume. The payload consists of two XMM-like X-ray telescopes with an effective area of 2,800cm^2 at 1.5keV and state-of-the-art wide field DEPFET pixel detectors (0.1-10keV) in a curved focal plane configuration to extend the FoV. The X-ray telescopes are complemented by a 1.5m optical/IR telescope with 8 instruments for simultaneous coverage of the same FoV from 0.3 to 4 microns. The 8 dichroic-separated bands (u,g,r,z,J,H,K,L) provide accurate photometric galaxy redshifts, whereas the diffraction-limited resolution of the central z-band allows precise shape measurements for cosmic shear analysis. The 5 year VADER survey will cover a contiguous sky area of 3,500 square degrees to a depth of z~2 and will yield accurate photometric redshifts and multi-wavelength object parameters for about 175,000 galaxy clusters, one billion galaxies, and 5 million AGN. VADER will not only provide unprecedented constraints on the nature of dark energy, but will additionally extend and trigger a multitude of cosmic evolution studies to very large (>10 Gyrs) look-back times.Comment: 14 pages, 7 figures, accepted for publication in the SPIE conference proceeding
    corecore